Bacterial communities associated with flea vectors of plague.

نویسندگان

  • David L Erickson
  • Nathan E Anderson
  • Lauren M Cromar
  • Andrea Jolley
چکیده

The microbial flora associated with fleas may affect their ability to transmit specific pathogens, including Yersinia pestis, and also could be used to develop paratransgenesis-based approaches to interfere with transmission. To begin addressing this hypothesis, the microbial flora associated with the relatively efficient Y. pestis vectors Xenopsylla cheopis (Rothschild) (Siphonaptera: Pulicidae) and Oropsyllamontana (Baker) (Siphonaptera: Ceratophyllidae), and the inefficient vector Ctenocephalides felis felis (Bouché) (Siphonaptera: Pulicidae) were investigated using polymerase chain reaction amplification of 16S rDNA genes. DNA sequencing revealed that these species harbor distinct communities of microbial flora and suggest that Acinetobacter sp. might be used in developing anti-transmission strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymerase chain reaction (PCR) identification of rodent blood meals confirms host sharing by flea vectors of plague.

Elucidating feeding relationships between hosts and parasites remains a significant challenge in studies of the ecology of infectious diseases, especially those involving small or cryptic vectors. Black-tailed prairie dogs (Cynomys ludovicianus) are a species of conservation importance in the North American Great Plains whose populations are extirpated by plague, a flea-vectored, bacterial dise...

متن کامل

We are connected: flea–host association networks in the plague outbreak focus in the Rift Valley, northern Tanzania

Context. Plague is a serious health problem in northern Tanzania, with outbreaks since 2008 in two districts located in Rift Valley. There is dearth of knowledge on diversity of small mammal and flea fauna occurring in this plague focus. Knowledge on interactions between fleas and rodent species that harbour the plague bacterium, Yersinia pestis, is important for developing strategies for contr...

متن کامل

Modeling susceptible infective recovered dynamics and plague persistence in California rodent-flea communities.

Plague persists as an enzootic in several very different rodent-flea communities around the world. In California, a diversity of rodent-flea communities maintains the disease, and a single-host reservoir seems unlikely. Logistic regression of plague presence on climate and topographic variables predicts plague in many localities where it is absent. Thus, a dynamic community-based analysis was n...

متن کامل

Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics.

Black-tailed prairie dogs (Cynomys ludovicianus) on the Great Plains of the United States are highly susceptible to plague, caused by the bacterium Yersinia pestis, with mortality on towns during plague epizootics often approaching 100%. The ability of flea-borne transmission to sustain disease spread has been questioned because of inefficiency of flea vectors. However, even with low individual...

متن کامل

Evaluation of the Murine Immune Response to Xenopsylla cheopis Flea Saliva and Its Effect on Transmission of Yersinia pestis

BACKGROUND/AIMS Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical entomology

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2009